
Project 2 (Deques and Randomized Queues)

This document only contains the description of the project and the project problems. For the programming exercises on
concepts related to the project, please refer to the project checklist .

Goal The purpose of this project is to implement elementary data structures using arrays and linked lists, and to introduce
you to generics and iterators.

Problem 1. (Deque) A double-ended queue or deque (pronounced “deck”) is a generalization of a stack and a queue that
supports adding and removing items from either the front or the back of the data structure. Create a generic, iterable data
type called LinkedDeque that uses a doubly-linked list to implement the following deque API:

² LinkedDeque

LinkedDeque() constructs an empty deque
boolean isEmpty() returns true if this deque empty, and false otherwise
int size() returns the number of items on this deque
void addFirst(Item item) adds item to the front of this deque
void addLast(Item item) adds item to the back of this deque
Item peekFirst() returns the item at the front of this deque
Item removeFirst() removes and returns the item at the front of this deque
Item peekFirst() returns the item at the back of this deque
Item removeLast() removes and returns the item at the back of this deque
Iterator<Item> iterator() returns an iterator to iterate over the items in this deque from front to back

Corner Cases

• The add*() methods should throw a NullPointerException("item is null") if item is null.

• The peek*() and remove*() methods should throw a NoSuchElementException("Deque is empty") if the deque is empty.

• The next() method in the deque iterator shoud throw a NoSuchElementException("Iterator is exhausted") if there are no more
items to iterate.

Performance Requirements

• The constructor and each method should run in time T (n) ∼ 1.

• The constructor and methods in the deque iterator should run in time T (n) ∼ 1.

& ~/workspace/project2

$ java LinkedDeque
Filling the deque ...
The deque (364 characters ): There is grandeur in this view of life , with its several powers , having been originally
breathed into a few forms or into one; and that , whilst this planet has gone cycling on according to the fixed law
of gravity , from so simple a beginning endless forms most beautiful and most wonderful have been , and are being ,
evolved. ~ Charles Darwin , The Origin of Species
Emptying the deque ...
deque.isEmpty ()? true

Problem 2. (Sorting Strings) Implement a program Sort.java that accepts strings from standard input, stores them in a
LinkedDeque data structure, sorts the deque, and writes the sorted strings to standard output.

Performance Requirements

• Your implementation should run in time T (n) ∼ n2, where n is the number of input strings.

1 of 3

https://www.swamiiyer.net/cs210/project2_checklist.pdf


Project 2 (Deques and Randomized Queues)

& ~/workspace/project2

$ java Sort
A B R A C A D A B R A
<ctrl -d>
A
A
A
A
A
B
B
C
D
R
R

Problem 3. (Random Queue) A random queue is similar to a stack or queue, except that the item removed is chosen
uniformly at random from items in the data structure. Create a generic, iterable data type called ResizingArrayRandomQueue that
uses a resizing array to implement the following random queue API:

² ResizingArrayRandomQueue

ResizingArrayRandomQueue() constructs an empty random queue
boolean isEmpty() returns true if this queue is empty, and false otherwise
int size() returns the number of items in this queue
void enqueue(Item item) adds item to the end of this queue
Item sample() returns a random item from this queue
Item dequeue() removes and returns a random item from this queue
Iterator<Item> iterator() returns an independent† iterator to iterate over the items in this queue in random order

† The order of two or more iterators on the same randomized queue must be mutually independent, ie, each iterator must
maintain its own random order.

Corner Cases

• The enqueue() method should throw a NullPointerException("item is null") if item is null.

• The sample() and dequeue() methods should throw a NoSuchElementException("Random queue is empty") if the random queue is empty.

• The next() method in the random queue iterator shoud throw a NoSuchElementException("Iterator is exhausted") if there are no
more items to iterate.

Performance Requirements

• The constructor and each method should run in amortized time T (n) ∼ 1.

• The constructor in the random queue iterator should run in time T (n) ∼ n.

• The methods in the random queue iterator should run in time T (n) ∼ 1.

& ~/workspace/project2

$ java ResizingArrayRandomQueue
sum = 5081434
iterSumQ = 5081434
dequeSumQ = 5081434
iterSumQ + dequeSumQ == 2 * sum? true

2 of 3



Project 2 (Deques and Randomized Queues)

Problem 4. (Sampling Integers) Implement a program Sample.java that accepts lo (int), hi (int), k (int), and mode (String)
as command-line arguments, uses a random queue to sample k integers from the interval [lo, hi], and writes the samples to
standard output. The sampling must be done with replacement if mode is “+”, and without replacement if mode is “-”. You
may assume that k ≤ hi− lo + 1.

Corner Cases

• The program should throw a IllegalArgumentException("Illegal mode") if mode is different from “+” or “-”.

Performance Requirements

• The program should run in time T (k, n) ∼ kn in the worst case (sampling without replacement), where k is the sample
size and n is the length of the sampling interval.

& ~/workspace/project2

$ java Sample 1 5 5 +
3
3
5
4
1
$ java Sample 1 5 5 -
2
3
1
4
5

Acknowledgements This project is an adaptation of the Deques and Randomized Queues assignment developed at Princeton
University by Kevin Wayne.

3 of 3


