
Project 3 (Autocomplete)

This document only contains the description of the project and the project problems. For the programming exercises on
concepts related to the project, please refer to the project checklist .

Goal The purpose of this assignment is to write a program to implement autocomplete for a given set of n strings and
nonnegative weights. That is, given a prefix, find all strings in the set that start with the prefix, in descending order of
weight.

Autocomplete is an important feature of many modern applications. As the user types, the program predicts the complete
query (typically a word or phrase) that the user intends to type. Autocomplete is most effective when there are a limited
number of likely queries. For example, the Internet Movie Database uses it to display the names of movies as the user types;
search engines use it to display suggestions as the user enters web search queries; cell phones use it to speed up text input.

In these examples, the application predicts how likely it is that the user is typing each query and presents to the user a list of
the top-matching queries, in descending order of weight. These weights are determined by historical data, such as box office
revenue for movies, frequencies of search queries from other Google users, or the typing history of a cell phone user. For the
purposes of this assignment, you will have access to a set of all possible queries and associated weights (and these queries
and weights will not change).

The performance of autocomplete functionality is critical in many systems. For example, consider a search engine which runs
an autocomplete application on a server farm. According to one study, the application has only about 50ms to return a list
of suggestions for it to be useful to the user. Moreover, in principle, it must perform this computation for every keystroke
typed into the search bar and for every user !

In this assignment, you will implement autocomplete by sorting the queries in lexicographic order; using binary search to
find the set of queries that start with a given prefix; and sorting the matching queries in descending order by weight.

Problem 1. (Autocomplete Term) Implement an immutable comparable data type called Term that represents an autocomplete
term: a string query and an associated real-valued weight. You must implement the following API, which supports comparing
terms by three different orders: lexicographic order by query; in descending order by weight; and lexicographic order by query
but using only the first r characters. The last order may seem a bit odd, but you will use it in Problem 3 to find all terms
that start with a given prefix (of length r).

² Term

Term(String query) constructs a term given the associated query string, having weight 0
Term(String query, long weight) constructs a term given the associated query string and weight
String toString() returns a string representation of this term
int compareTo(Term that) returns a comparison of this term and other by query
static Comparator<Term> byReverseWeightOrder() returns a comparator for comparing two terms in reverse order of their weights
static Comparator<Term> byPrefixOrder(int r) returns a comparator for comparing two terms by their prefixes of length r

1 of 3

https://www.swamiiyer.net/cs210/project3_checklist.pdf
http://www.imdb.com/


Project 3 (Autocomplete)

Corner Cases

• The constructor should throw a NullPointerException("Null query") if query is null and an IllegalArgumentException("Illegal weight")

if weight < 0.

• The byPrefixOrder() method should throw an IllegalArgumentException("Illegal r") if r < 0.

Performance Requirements

• The string comparison methods should run in time T (n) ∼ n, where n is number of characters needed to resolve the
comparison.

& ~/workspace/project3

$ java Term data/baby -names.txt 5
Top 5 by lexicographic order:
11 Aaban
5 Aabha
11 Aadam
11 Aadan
12 Aadarsh
Top 5 by reverse -weight order:
22175 Sophia
20811 Emma
18949 Isabella
18936 Mason
18925 Jacob

Problem 2. (Binary Search Deluxe) When binary searching a sorted array that contains more than one key equal to the
search key, the client may want to know the index of either the first or the last such key. Accordingly, implement a library
called BinarySearchDeluxe with the following API:

² BinarySearchDeluxe

static int firstIndexOf(Key[] a, Key key, Comparator<Key> c) returns the index of the first key in a that equals the search key, or
-1, according to the order induced by the comparator c

static int lastIndexOf(Key[] a, Key key, Comparator<Key> c) returns the index of the last key in a that equals the search key, or
-1, according to the order induced by the comparator c

Corner Cases

• Each method should throw a NullPointerException("Null a, key, or c") if any of the arguments is null. You may assume that
the array a is sorted (with respect to the comparator c).

Performance Requirements

• Each method should should run in time T (n) ∼ log n, where n is the length of the array a.

& ~/workspace/project3

$ java BinarySearchDeluxe data/wiktionary.txt love
firstIndexOf(love) = 5318
lastIndexOf(love) = 5324
frequency(love) = 7
$ java BinarySearchDeluxe data/wiktionary.txt coffee
firstIndexOf(coffee) = 1628
lastIndexOf(coffee) = 1628
frequency(coffee) = 1
$ java BinarySearchDeluxe data/wiktionary.txt java
firstIndexOf(java) = -1
lastIndexOf(java) = -1
frequency(java) = 0

Problem 3. (Autocomplete) In this part, you will implement a data type that provides autocomplete functionality for a
given set of string and weights, using Term and BinarySearchDeluxe. To do so, sort the terms in lexicographic order; use binary
search to find the set of terms that start with a given prefix; and sort the matching terms in descending order by weight.
Organize your program by creating an immutable data type called Autocomplete with the following API:

2 of 3



Project 3 (Autocomplete)

² Autocomplete

Autocomplete(Term[] terms) constructs an autocomplete data structure from an array of terms

Term[] allMatches(String prefix) returns all terms that start with prefix, in descending order of their weights.
int numberOfMatches(String prefix) returns the number of terms that start with prefix

Corner Cases

• The constructor should throw a NullPointerException("terms is null") if terms is null.

• Each method should throw a NullPointerException("prefix is null)" if prefix is null.

Performance Requirements

• The constructor should run in time T (n) ∼ n log n, where n is the number of terms.

• The allMatches() method should run in time T (n) ∼ log n + m logm, where m is the number of matching terms.

• The numberOfMatches() method should run in time T (n) ∼ log n.

& ~/workspace/project3

$ java Autocomplete data/wiktionary.txt 5
Enter a prefix (or ctrl -d to quit): love
First 5 matches for "love", in descending order by weight:

49649600 love
12014500 loved
5367370 lovely
4406690 lover
3641430 loves

Enter a prefix (or ctrl -d to quit): coffee
All matches for "coffee", in descending order by weight:

2979170 coffee
Enter a prefix (or ctrl -d to quit):
First 5 matches for "", in descending order by weight:

5627187200 the
3395006400 of
2994418400 and
2595609600 to
1742063600 in

Enter a prefix (or ctrl -d to quit): <ctrl -d>

Acknowledgements This project is an adaptation of the Autocomplete Me assignment developed at Princeton University
by Matthew Drabick and Kevin Wayne.

3 of 3


