
Project 6 (WordNet)

This document only contains the description of the project and the project problems. For the programming exercises on
concepts related to the project, please refer to the project checklist .

Goal Find the shortest common ancestor of a digraph in WordNet, a semantic lexicon for the English language that compu-
tational linguists and cognitive scientists use extensively. For example, WordNet was a key component in IBM’s Jeopardy-
playing Watson computer system.

WordNet groups words into sets of synonyms called synsets. For example, {AND circuit, AND gate} is a synset that
represents a logical gate that fires only when all of its inputs fire. WordNet also describes semantic relationships between
synsets. One such relationship is the is-a relationship, which connects a hyponym (more specific synset) to a hypernym (more
general synset). For example, the synset {gate, logic gate} is a hypernym of {AND circuit, AND gate} because an AND gate
is a kind of logic gate.

The WordNet Digraph Your first task is to build the WordNet digraph: each vertex v is an integer that represents a
synset, and each directed edge v → w denotes that w is a hypernym of v. The WordNet digraph is a rooted DAG : it is acyclic
and has one vertex — the root — that is an ancestor of every other vertex. However, it is not necessarily a tree because a
synset can have more than one hypernym. A small subgraph of the WordNet digraph is shown below.

The WordNet Input File Formats We now describe the two data files that you will use to create the WordNet digraph.
The files are in comma-separated values (CSV) format: each line contains a sequence of fields, separated by commas.

• List of synsets. The file synsets.txt contains all noun synsets in WordNet, one per line. Line i of the file (counting from
0) contains the information for synset i. The first field is the synset id, which is always the integer i; the second field
is the synonym set (or synset); and the third field is its dictionary definition (or gloss), which is not relevant to this
assignment.

1 of 6

https://www.swamiiyer.net/cs210/project5_checklist.pdf
http://wordnet.princeton.edu/
http://en.wikipedia.org/wiki/Watson_(computer)

Project 6 (WordNet)

For example, line 36 implies that the synset AND_circuit AND_gate has an id number of 36 and it’s gloss is “a circuit in a
computer that fires only when all of its inputs fire”. The individual nouns that constitute a synset are separated by
spaces. If a noun contains more than one word, the words are connected by the underscore character.

• List of hypernyms. The file hypernyms.txt contains the hypernym relationships. Line i of the file contains the hypernyms
of synset i. The first field is the synset id, which is always the integer i; subsequent fields are the id numbers of the
synset’s hypernyms.

For example, line 36 implies that synset 36 (AND_circuit AND_Gate) has 42338 (gate logic_gate) as it only hypernym. Line
34 implies that synset 34 (AIDS acquired_immune_deficiency_syndrome) has two hypernyms: 47569 (immunodeficiency) and 56099
(infectious_disease).

Problem 1. (WordNet Data Type) Implement an immutable data type called WordNet with the following API:

² WordNet

WordNet(String synsets, String hypernyms) constructs a WordNet object given the names of the input (synset and hypernym) files
Iterable<String> nouns() returns all WordNet nouns
boolean isNoun(String word) returns true if the given word is a WordNet noun, and false otherwise
String sca(String noun1, String noun2) returns a synset that is a shortest common ancestor of noun1 and noun2

int distance(String noun1, String noun2) returns the length of the shortest ancestral path between noun1 and noun2

2 of 6

Project 6 (WordNet)

Corner Cases

• The constructor should throw a NullPointerException() with the message "synsets is null" if synsets is null and the message
"hypernyms is null" if hypernyms is null.

• The isNoun() method should throw a NullPointerException("word is null") if word is null.

• The sca() and distance() methods should throw a NullPointerException() with the message "noun1 is null" or "noun2 is null" if
noun1 or noun2 is null. The methods should throw an IllegalArgumentException() with the message "noun1 is not a noun" or
"noun2 is not a noun" if noun1 or noun2 is not a noun.

Performance Requirements

• The constructor and the nouns() method should run in time T (n) ∼ n, where n is the size of the WordNet lexicon.

• The isNoun() method should run in time T (n) ∼ 1.

• The sca() and distance() methods should make exactly one call to the ancestor() and length() methods in ShortestCommonAncestor,
respectively.

& ~/workspace/project6

$ java WordNet data/synsets.txt data/hypernyms.txt worm bird
of nouns = 119188
isNoun(worm)? true
isNoun(bird)? true
isNoun(worm bird)? false
sca(worm , bird) = animal animate_being beast brute creature fauna
distance(worm , bird) = 5

Shortest Common Ancestor An ancestral path between two vertices v and w in a rooted DAG is a directed path from
v to a common ancestor x, together with a directed path from w to the same ancestor x. A shortest ancestral path is an
ancestral path of minimum total length. We refer to the common ancestor in a shortest ancestral path as a shortest common
ancestor. Note that a shortest common ancestor always exists because the root is an ancestor of every vertex. Note also that
an ancestral path is a path, but not a directed path.

We generalize the notion of shortest common ancestor to subsets of vertices. A shortest ancestral path of two subsets of
vertices A and B is a shortest ancestral path over all pairs of vertices v and w, with v in A and w in B.

3 of 6

Project 6 (WordNet)

Problem 2. (ShortestCommonAncestor Data Type) Implement an immutable data type called ShortestCommonAncestor with the following
API:

² ShortestCommonAncestor

ShortestCommonAncestor(Digraph G) constructs a ShortestCommonAncestor object given a rooted DAG
int length(int v, int w) returns length of the shortest ancestral path between vertices v and w

int ancestor(int v, int w) returns a shortest common ancestor of vertices v and w

int length(Iterable<Integer> A, Iterable<Integer> B) returns length of the shortest ancestral path of vertex subsets A and B

int ancestor(Iterable<Integer> A, Iterable<Integer> B) returns a shortest common ancestor of vertex subsets A and B

Corner Cases

• The constructor should throw a NullPointerException("G is null") if G is null.

• The length() and ancestor() methods should throw an IndesOutOfBoundsException() with the message "v is invalid" or "w is invalid"

if v, w < 0 or v, w ≥ V , the number of vertices in G.

• The overloaded length() and ancestor() methods should throw a NullPointerException() with the message "A is null" or "B is null"

if the vertex subset A or B is null. The methods should throw an IllegalArgumentException() with the message "A is empty"

or "B is empty" if either A or B is empty.

Performance Requirements

• The constructor run in time T (E, V) ∼ 1, where E and V are the number of edges and vertices in the digraph G,
respectively.

• The methods length() and ancestor() should run in time T (E, V) ∼ E + V . To be precise, they should run in time
proportional to the number of vertices and edges reachable from the argument vertices. For example, to compute the
shortest common ancestor of v and w in the digraph below, your algorithm can only examine the highlighted vertices
and edges and it should not initialize any vertex-indexed arrays.

4 of 6

Project 6 (WordNet)

& ~/workspace/project6

$ java ShortestCommonAncestor data/digraph1.txt
3 10 8 11 6 2
<ctrl -d>
length = 4, ancestor = 1
length = 3, ancestor = 5
length = 4, ancestor = 0

Measuring the Semantic Relatedness of Two Nouns Semantic relatedness refers to the degree to which two concepts
are related. Measuring semantic relatedness is a challenging problem. For example, you consider George W. Bush and John
F. Kennedy (two U.S. presidents) to be more closely related than George W. Bush and chimpanzee (two primates). It might
not be clear whether George W. Bush and Eric Arthur Blair are more related than two arbitrary people. However, both
George W. Bush and Eric Arthur Blair (aka George Orwell) are famous communicators and, therefore, closely related. We
define the semantic relatedness of two WordNet nouns x and y as follows:

• A is set of synsets in which x appears;

• B is set of synsets in which y appears;

• sca(x, y) a shortest common ancestor of A and B; and

• distance(x, y) is length of shortest ancestral path of A and B.

This is the notion of distance that you will use to implement the distance() and sca() methods in the WordNet data type.

5 of 6

Project 6 (WordNet)

Outcast Detection Given a list of WordNet nouns x1, x2, . . . , xn, which noun is the least related to the others? To identify
an outcast, compute the sum of the distances between each noun and every other one:

di = distance(xi, x1) + distance(xi, x2) + · · ·+ distance(xi, xn)

and return a noun xi for which di is maximum. Note that because distance(xi, xi) = 0, it will not contribute to the sum.

Problem 3. (Outcast Data Type) Implement an immutable data type called Outcast with the following API:

² Outcast

Outcast(WordNet wordnet) constructs an Outcast object given the WordNet semantic lexicon
String outcast(String[] nouns) returns the outcast noun from nouns

You may assume that argument to outcast() contains only valid WordNet nouns (and that it contains at least two such nouns).

& ~/workspace/project6

$ java Outcast data/synsets.txt data/hypernyms.txt < data/outcast10.txt
cat cheetah dog wolf *albatross* horse zebra lemur orangutan chimpanzee
$ java Outcast data/synsets.txt data/hypernyms.txt < data/outcast11.txt
apple pear peach banana lime lemon blueberry strawberry mango watermelon *potato*
$ java Outcast data/synsets.txt data/hypernyms.txt < data/outcast12.txt
competition cup event fielding football level practice prestige team tournament world *mongoose*

Acknowledgements This project is an adaptation of the WordNet assignment developed at Princeton University by Alina
Ene and Kevin Wayne.

6 of 6

