
Project 3 (Parsing)

Goal

1. Support long and double basic types.

2. Support operators.

3. Support conditional expression and switch statement.

4. Support do, for, break, and continue statements.

5. Support exception handlers.

6. Support interface type declaration.

Grammars

The lexical and syntactic grammars for j-- and Java can be found at https://www.cs.umb.edu/j--/grammar.pdf W.

Download the Project Tests

Download and unzip the tests W for this project under $j/j--.

In this project, you will only be supporting the parsing of the above programming constructs.

Run the following command inside the $j/j-- directory to compile the j-- compiler with your changes.

& ~/workspace/j--

$ ant

Run the following command to compile (just parse for now) a j-- program XYZ.java using the j-- compiler.

& ~/workspace/j--

$ bash ./bin/j-- -p project3/XYZ.java

which will only parse XYZ.java and print the AST for the program. The file project3/XYZ.ast provides the reference (ie, expected)
output.

Problem 1. (Long and Double Basic Types) Add support for the long and double basic types.

AST representation(s):

• JLiteralLong.java

• JLiteralDouble.java

Directions:

• Modify Parser.java to parse longs and doubles.

Problem 2. (Operators) Add support for the following operators. Note that parsing support for some of the operators was
added to j-- in Project 1.

!= /= -= *= %= >>= >>>= >=

<<= < ^= |= || &= ++ --

/ % << >> >>> ~ | ^

& +

AST representation(s):

1 / 4

https://www.cs.umb.edu/j--/grammar.pdf
http://www.swamiiyer.net/cs451/project3.zip

Project 3 (Parsing)

• -=: JMinusAssignOp in JAssignment.java

• *=: JStarAssignOp in JAssignment.java

• /=: JDivAssignOp in JAssignment.java

• %=: JRemAssignOp in JAssignment.java

• |=: JOrAssignOp in JAssignment.java

• &=: JAndAssignOp in JAssignment.java

• ^=: JXorAssignOp in JAssignment.java

• <<=: JALeftShiftAssignOp in JAssignment.java

• >>=: JARightShiftAssignOp in JAssignment.java

• >>>=: JLRightShiftAssignOp in JAssignment.java

• /: JDivideOp in JBinaryExpression.java

• %: JRemainderOp in JBinaryExpression.java

• |: JOrOp in JBinaryExpression.java

• ^: JXorOp in JBinaryExpression.java

• &: JAndOp in JBinaryExpression.java

• <<: JALeftShiftOp in JBinaryExpression.java

• >>: JARightShiftOp in JBinaryExpression.java

• >>>: JLRightShiftOp in JBinaryExpression.java

• ||: JLogicalOrOp in JBooleanBinaryExpression.java

• !=: JNotEqualOp in JBooleanBinaryExpression.java

• >=: JGreaterEqualOp in JComparison.java

• <: JLessThanOp in JComparison.java

• ~: JComplementOp in JUnaryExpression.java

• ++: JPostIncrementOp in JUnaryExpression.java

• --: JPreDecrementOp in JUnaryExpression.java

• +: JUnaryPlusOp in JUnaryExpression.java

Directions:

• Modify Parser.java to parse the operators, correctly capturing the precedence rules by parsing the operators in the right
places.

• Update statementExpression() in Parser.java to include post-increment and pre-decrement expressions.

Problem 3. (Conditional Expression) Add support for conditional expression (e ? e1 : e2).

AST representation(s):

2 / 4

Project 3 (Parsing)

• JConditionalExpression.java

Directions:

• Modify Parser.java to parse a conditional expression, correctly capturing the precedence rules by parsing the expression
in the right place.

Problem 4. (Do Statement) Add support for a do statement.

AST representation(s):

• JDoStatement.java

Directions:

• Modify Parser.java to parse a do statement.

Problem 5. (For Statement) Add support for a for statement.

AST representation(s):

• JForStatement.java

Directions:

• Modify Parser.java to parse a for statement.

• If forInit() is not looking at a local variable declaration, then it must return a list of statement expressions. Otherwise,
it must return a list containing a single JVariableDeclaration object encapsulating the variable declarators.

Problem 6. (Break Statement) Add support for a break statement.

AST representation(s):

• JBreakStatement.java

Directions:

• Modify Parser.java to parse a break statement.

Problem 7. (Continue Statement) Add support for a continue statement.

AST representation(s):

• JContinueStatement.java

Directions:

• Modify Parser.java to parse a continue statement.

3 / 4

Project 3 (Parsing)

Problem 8. (Switch Statement) Add support for a switch statement.

AST representation(s):

• JSwitchStatement.java

Directions:

• Modify Parser.java to parse a switch statement. After parsing SWITCH parExpression LCURLY, parse a switchBlockStatementGroup until
you see an RCURLY or EOF. Then scan an RCURLY.

• In switchBlockStatementGroup(), after parsing one or more occurrences of switchLabel, parse a blockStatement until you see a CASE,
DEFLT, or RCURLY

Problem 9. (Exception Handlers) Add support for exception handling, which involves supporting the try, catch, finally, throw,
and throws clauses.

AST representation(s):

• JTryStatement.java

• JThrowStatement.java

Directions:

• Modify Parser.java to parse a try statement, a throw statement, and the throws clause in constructor and method
declarations.

Problem 10. (Interface Type Declaration) Implement support for interface declaration.

AST representation(s):

• JInterfaceDeclaration.java

Directions:

• Modify Parser.java to parse an interface declaration and the implements clause in class declaration.

Before you submit your files, make sure:

• Your code is adequately commented and follows good programming principles.

• You use the template file report.txt for your report.

• Your report meets the prescribed guidelines.

Files to submit:

1. TokenInfo.java

2. Scanner.java

3. Parser.java

4. JBinaryExpression.java

5. JUnaryExpression.java

6. report.txt

4 / 4

