
Project 4 (Scanning and Parsing with JavaCC)

Goal

1. Support multiline comment.

2. Support long and double basic types.

3. Support operators.

4. Support conditional expression and switch statement.

5. Support do-while, for, break, and continue statements.

6. Support exception handlers.

7. Support interface type declaration.

Grammars

The lexical and syntactic grammars for j-- and Java can be found at https://www.cs.umb.edu/j--/grammar.pdf W.

Download the Project Tests

Download and unzip the tests W for this project under $j/j--.

In this project you will only modify the JavaCC specification file $j/j--/src/jminusminus/j--.jj for j-- to add more Java tokens
and programming constructs to the j-- language. In the first part, you will modify the scanner section of the j--.jj file to
support the Java tokens that you handled as part of Project 2 (Scanning). In the second part, you will modify the parser
section of the file to support the Java programming constructs that you handled as part of Project 3 (Parsing).

Run the following command inside the $j/j-- directory to compile the j-- compiler with your changes.

& ~/workspace/j--

$ ant

Part I: Additions to JavaCC Scanner

To scan your j-- programs using the JavaCC scanner, you need to run the javaccj-- command as follows:

& ~/workspace/j--

$ bash ./bin/javaccj -- -t project4/XYZ.java

which only scans XYZ.java and prints the tokens in the program along with the line number where each token appears. The
file project4/XYZ.tokens provides the reference (ie, expected) output.

Problem 1. (Multiline Comment) Add support for multiline comment, where all the text from the ASCII characters /* to
the ASCII characters */ is ignored.

Directions:

• Using the rules for single line comment as a model, write down rules for scanning a multiline comment.

Problem 2. (Operators) Add support for the following operators.

? : ~ != / /= -= *= % %=

>> >>= >>> >>>= >= << <<= < ^ ^=

| |= || & &=

1 / 5

https://www.cs.umb.edu/j--/grammar.pdf
http://www.swamiiyer.net/cs451/project4.zip

Project 4 (Scanning and Parsing with JavaCC)

Directions:

• List the operators in j--.jj.

Problem 3. (Reserved Words) Add support for the following reserved words.

break case catch continue default do

double finally for implements interface long

switch throw throws try

Directions:

• List the reserved words in j--.jj.

Problem 4. (Literals) Add support for long and double literals (just decimal).

Directions:

• Using the regular expressions for the currently supported literals as a model, write down regular expressions for scanning
long and double literals.

Part II: Additions to JavaCC Parser

To parse your j-- programs using the JavaCC parser, you need to run the javaccj-- command as follows:

& ~/workspace/j--

$ bash ./bin/javaccj -- -p project4/XYZ.java

which will only parse XYZ.java and print the AST for the program. The file project4/XYZ.ast provides the reference (ie, expected)
output.

Problem 5. (Long and Double Basic Types) Add support for the long and double basic types.

AST representation(s):

• JLiteralLong.java

• JLiteralDouble.java

Directions:

• Modify j--.jj to parse longs and doubles.

Problem 6. (Operators) Add support for the following operators.

!= /= -= *= %= >>= >>>= >=

<<= < ^= |= || &= ++ --

/ % << >> >>> ~ | ^

& +

AST representation(s):

• -=: JMinusAssignOp in JAssignment.java

2 / 5

Project 4 (Scanning and Parsing with JavaCC)

• *=: JStarAssignOp in JAssignment.java

• /=: JDivAssignOp in JAssignment.java

• %=: JRemAssignOp in JAssignment.java

• |=: JOrAssignOp in JAssignment.java

• &=: JAndAssignOp in JAssignment.java

• ^=: JXorAssignOp in JAssignment.java

• <<=: JALeftShiftAssignOp in JAssignment.java

• >>=: JARightShiftAssignOp in JAssignment.java

• >>>=: JLRightShiftAssignOp in JAssignment.java

• /: JDivideOp in JBinaryExpression.java

• %: JRemainderOp in JBinaryExpression.java

• |: JOrOp in JBinaryExpression.java

• ^: JXorOp in JBinaryExpression.java

• &: JAndOp in JBinaryExpression.java

• <<: JALeftShiftOp in JBinaryExpression.java

• >>: JARightShiftOp in JBinaryExpression.java

• >>>: JLRightShiftOp in JBinaryExpression.java

• ||: JLogicalOrOp in JBooleanBinaryExpression.java

• !=: JNotEqualOp in JBooleanBinaryExpression.java

• >=: JGreaterEqualOp in JComparison.java

• <: JLessThanOp in JComparison.java

• ~: JComplementOp in JUnaryExpression.java

• ++: JPostIncrementOp in JUnaryExpression.java

• --: JPreDecrementOp in JUnaryExpression.java

• +: JUnaryPlusOp in JUnaryExpression.java

Directions:

• Modify j--.jj to parse the operators, correctly capturing the precedence rules by parsing the operators in the right
places.

• Update statementExpression() in j--.jj to include post-increment and pre-decrement expressions.

Problem 7. (Conditional Expression) Add support for conditional expression (e ? e1 : e2).

AST representation(s):

• JConditionalExpression.java

3 / 5

Project 4 (Scanning and Parsing with JavaCC)

Directions:

• Modify j--.jj to parse a conditional expression.

Problem 8. (Do Statement) Add support for a do statement.

AST representation(s):

• JDoStatement.java

Directions:

• Modify j--.jj to parse a do statement.

Problem 9. (For Statement) Add support for a for statement.

AST representation(s):

• JForStatement.java

Directions:

• Modify j--.jj to parse a for statement.

• If forInit() is looking at a statement expression, then it must return a list of statement expressions. Otherwise, it must
return a list containing a single JVariableDeclaration object encapsulating the variable declarators.

Problem 10. (Break Statement) Add support for a break statement.

AST representation(s):

• JBreakStatement.java

Directions:

• Modify j--.jj to parse a break statement.

Problem 11. (Continue Statement) Add support for a continue statement.

AST representation(s):

• JContinueStatement.java

Directions:

• Modify j--.jj to parse a continue statement.

Problem 12. (Switch Statement) Add support for a switch statement.

AST representation(s):

• JSwitchStatement.java

4 / 5

Project 4 (Scanning and Parsing with JavaCC)

Directions:

• Modify j--.jj to parse a switch statement. After parsing SWITCH parExpression LCURLY, parse zero or more occurrences of a
switchBlockStatementGroup, and then scan an RCURLY.

• In switchBlockStatementGroup(), after parsing one or more occurrences of switchLabel, parse zero or more occurrences of a
blockStatement.

Problem 13. (Exception Handlers) Add support for exception handling, which involves supporting the try, catch, finally,
throw, and throws clauses. Note that there has to be a finally clause if there are not catch clauses.

AST representation(s):

• JTryStatement.java

• JThrowStatement.java

Directions:

• Modify j--.jj to parse a try statement, a throw statement, and the throws clause in constructor and method declarations.

Problem 14. (Interface Type Declaration) Implement support for interface declaration.

AST representation(s):

• JInterfaceDeclaration.java

Directions:

• Modify j--.jj to parse an interface declaration and the implements clause in class declaration.

Before you submit your files, make sure:

• Your code is adequately commented and follows good programming principles.

• You use the template file report.txt for your report.

• Your report meets the prescribed guidelines.

Files to submit:

1. j--.jj

2. TokenInfo.java

3. Scanner.java

4. Parser.java

5. JBinaryExpression.java

6. JUnaryExpression.java

7. report.txt

5 / 5

