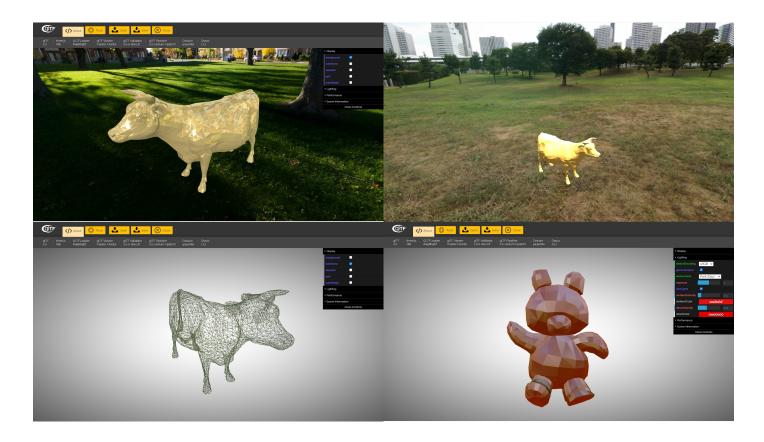
University of Massachusetts Boston


CS460 Fall 2021 Name: Tung Duong

Github Username: TungDuong2

Due Date: 12/06/2021

Assignment 10: gITF!

We will load our favorite mesh from a file and then convert it to a valid gITF file. You can choose if you want to do this assignment in JavaScript or in Python. In class, we will use Python (see example colab https://cs460.org/shortcuts/33/).

Starter code for assignment 10. After pulling from upstream, there is the folder 10 in your fork. This folder contains an index.html file that uses JavaScript to make gITF JSON. This folder also contains a gltf.py script that you can run with python gltf.py to output the gITF JSON. As a start for this assignment, both versions create an identical valid gITF JSON structure holding a single triangle (see screenshot above).

Part 1 (1 points): Please decide which language you will use: JavaScript or Python. Python might be a bit easier to load and parse an existing file—with JavaScript we need to use Ajax to load the existing mesh and parse it (or as option 3: use a Three.js loader and grab the vertices/indices from there). For parsing files with Python look here: https://tutorial.eyehunts.com/python/python-read-file-line-by-line-readlines/ For using Javascript and Ajax look here: https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest.

Part 2 (15 points): Load a mesh from an external file. A .PLY or .OBJ file might be the easiest to parse.

Part 3 (20 points): Parse all vertices from the loaded mesh and create the VERTICES array and base64 code.

Part 4 (20 points): Parse all indices from the loaded mesh and create the INDICES array and base 64 code.

Part 5 (10 points): Calculate all required fields for the gITF file (as we did in class) and generate the gITF JSON code. Store the gITF JSON code in a gITF file.

Part 6 (5 points): Please make sure the gITF file is valid using http://github.khronos.org/gITF-Validator/.

Part 7 (5 points): Visualize the gITF file using https://gltf.insimo.com/. You might have to choose the wireframe display option since the gITF file does not include material (Display -> Wireframe, in the dat.GUI). **Please replace the screenshot above.**

Part 8 (5 points): Add the gITF file to your fork.

Part 9 (10 points): Choose a final project—either an existing one from https://cs460.org/assignments/final/ or a new one. Please list the project here and in the link. If working as a team, assemble your team and list the team members below and in the link.

I decided to create a Spacecraft game (demo) on THREE.js by applying relevant knowledge from this course such as: OOP, sky box, gITF, camera, lights, etc.

https://tungduong2.github.io/cs460student/final/

Part 10 (9 points): Make sure this PDF and your gITF file are in your fork on github. Then, please send a pull request.

Bonus (33 points):

Part 1 (15 points): Please add any kind of material to the gITF file. For this, you would have to read the specs or google for examples:)

Part 2 (18 points): Write THREE.js code that displays your gITF file using the THREE.GLTFLoader.

```
// Instantiate a loader
const loader = new THREE.GLTFLoader();

// Load a glTF resource
loader.load(
    // resource URL
    'cow-nonormals.gltf',
    // called when the resource is loaded
    function ( gltf ) {

        const model = gltf.scene.children[0];
        model.scale.setScalar(5);
        model.position.set(0 ,-20, 0);

        scene.add( gltf.scene );

        gltf.animations; // Array<THREE.AnimationClip>
        gltf.scene; // THREE.Group
        gltf.scenes; // Array<THREE.Group>
        gltf.cameras; // Array<THREE.Camera>
        gltf.asset; // Object

},

// called while loading is progressing
function ( xhr ) {

        console.log( ( xhr.loaded / xhr.total * 100 ) + '% loaded' );

},

// called when loading has errors
function ( error ) {

        console.log( 'An error happened' );

}

});
```